SA-CNN: Dynamic Scene Classification using Convolutional Neural Networks

نویسندگان

  • Aalok Gangopadhyay
  • Shivam Mani Tripathi
  • Ishan Jindal
  • Shanmuganathan Raman
چکیده

The task of classifying videos of natural dynamic scenes into appropriate classes has gained lot of attention in recent years. The problem especially becomes challenging when the camera used to capture the video is dynamic.In this paper, we propose a statistical aggregation (SA) solution based on convolutional neural networks (CNNs) to address this problem. We call our approach as SA-CNN. The algorithm works by extracting CNN activation features for a number of frames in a video and then uses a statistical aggregation scheme in order to obtain a robust feature descriptor for the video. We show through results that the proposed approach performs better than the-state-of-the art algorithm for the Maryland dataset. The final descriptor obtained is powerful enough to distinguish among dynamic scenes and is even capable of addressing the scenario where the camera motion is dominant and the scene dynamics are complex. Further, this paper shows an extensive study on the performance of various statistical aggregation methods and their combinations in order to obtain minimal classification error. We compare the proposed approach with other dynamic scene classification algorithms on two publicly available datasets Maryland and YUPenn to demonstrate the superior performance of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters

Semantic-level land-use scene classification is a challenging problem, in which deep learning methods, e.g., convolutional neural networks (CNNs), have shown remarkable capacity. However, a lack of sufficient labeled images has proved a hindrance to increasing the land-use scene classification accuracy of CNNs. Aiming at this problem, this paper proposes a CNN pre-training method under the guid...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1502.05243  شماره 

صفحات  -

تاریخ انتشار 2015